

PII: S0040-4039(96)00647-8

Reactions of 4-Chloro-5*H*-1,2,3-dithiazol-5-thione with Primary and Secondary Alkylamines: Novel Method for Preparing *N*-Alkyl- and *N*,*N*-Dialkylcyanothioformamides

Hyi-Seung Lee and Kyongtae Kim*

Department of Chemistry, Seoul National University, Seoul 151-742, Korea

Abstract: Treatment of 4-chloro-5H-1,2,3-dithiazol-5-thione with primary and secondary alkylamines in CH_2Cl_2 at room temperature afforded N-alkyl- and N,N-dialkylcyanothioformamides, respectively. Copyright © 1996 Elsevier Science Ltd

Cyanothioformamides (1) are an important class of compounds which can be utilized not only as dienophiles for [2 + 4] cyclization reactions but also as starting materials for the synthesis of various compounds such as N-aryldithioxamides, ² 2-amino-2-cyanothirane, ³ 2-amino-2-cyano-3.5-diaryl-N-aryl-1.3,4-thiadiazole, ³ 2-amino-2-cyano-1.3,5-thioxazoles. N-aroyl-N-arylcyanothioformamides. N-arylcyanoformamidines. 5-imino-4oxazolidinethiones, 5-imino-4-thioxo-2-imidazolidinones, 5-imino-2,4-imidazolidinedithiones, and 4,5diimino-2-thiazolidinethione⁵ having appropriated substituents. There have been several methods for the preparation of 1: N-alkyl-7 and N-arylcvanothioamides^{2,6} (1, R¹ = H, R² = alkyl and aryl groups) have been exclusively prepared by the reactions of alkyl- and arylisothiocyanates with cyanides, respectively. On the other hand, synthesis of 1 with N,N-dialkyl groups have been mainly achieved by either a nucleophilic displacement of C-sulfonylthioformamide by cyanide or the reaction of sodium cyanodithiaformate with N,N-dialkylamines. Treatment of nitroacetamides with Lawesson's reagent gave N-alkyl- or N,Ndialkylcyanothioformamides depending on the number of alkyl groups on nitrogen atom of the amides. 10 To the best of our knowledge, this is the only known method for providing 1 with both of N-alkyl- and N,Ndialkyl groups. Recently we reported a new facile synthetic method for N-arylcyanothioformamide which involved in situ treatment of hydrochloride salts of 5-(N-arylimino)-4-chloro-5H-1,2,3-dithiazoles (2) with NaBH3CN in THF at room temperature.11

In connection with our ongoing project for the development of potential utilities of 2 toward the synthesis of new heteroatom compounds, 12 we describe here a novel and effective method for preparing N-alkyl- and N,N-dialkylcyanothioformamides 1 using 4-chloro-5H-1,2,3-dithazol-5-thione (3) 13 with a variety of alkylamine.

Yields of the N-alkyl products are much higher than those of N,N-dialkyl products. These results are summarized in Table 1.

A typical procedure: To a solution of 3 (90 mg, 0.583 mmol) in CH₂Cl₂ (30 mL) was added pentylamine (131 mg, 1.50 mmol). The mixture was stirred for 10 h at room temperature. After removal of the solvent, the residue was chromatographed on silica-gel (70 - 230 mesh, 1.5 x 15 cm) column. Elution with *n*-hexane gave a small amount of sulfur and unreacted 3. Further elution with chloroform gave *N*-pentylcyanothioformamide (1c) (44 mg, 48 %); IR (neat) 3272 (NH), 2928, 2224 (C=N, very weak), 1520, 1450, 1402, 1301, 1154, 1091, and 730 cm⁻¹; ¹H NMR (CDCl₃, 80 MHz) δ 0.90 (t, 3H, J = 8.0 Hz, CH₃), 1.11 - 1.98 (m, 6H, (CH₂)₃), 3.60 (t, 2H, J = 8.0 Hz, CH₂), 8.52 (s, 1H, NH). *Anal*. Calcd for C₇H₁₂N₂S: C, 53.81; H, 7.74; N, 17.93; S, 20.52. Found: C, 53.73; H, 7.72; N, 17.91; S, 20.64.

Table 1. Reaction of 4-chloro-5*H*-1,2,3-dithazol-5-thione (3) with amines to give *N*-alkyl- and *N*,*N*-dialkylcyanothioformamides (1)

Entry	\mathbb{R}^1	R ²	Time (h)	Product	Yield * (%)	mp (°C)
1	(CH₃)₂CH	Н	13	1a	85	56-57 ^b (lit. 14 55-56)
2	(CH₃)₃C	Н	3°	1b	45	89-90 ^b
3	CH ₃ (CH ₂) ₃ CH ₂	Н	10	1c	48	liquid
4	C ₆ H ₅ CH ₂	Н	10	1d	49	liquid
5	CH ₃	CH ₃	40	1e	27 ^d	59-60 ^b (lit. 9 60-61)
6	CH ₃ CH ₂	CH ₃ CH ₂	3	1f	81	36-38 ^b (lit. 9 37-38)
7	CH₃CH₂CH₂	CH₃CH₂CH₂	10	1g	79	liquid
8	(CH ₃) ₂ CHCH ₂	(CH ₃) ₂ CHCH ₂	3°	1h	52	liquid
9	CH ₂ =CHCH ₂	CH ₂ =CHCH ₂	10	1i	83	liquid
10	-CH ₂ (CH ₂) ₂ CH ₂ -		4	1j	76	35-36° (lit.8 34-36)
11	-CH ₂ (CH ₂) ₃ CH ₂ -		3	1k	92	37-39 ^b (lit. 9 37-38)
12	-CH ₂ CH ₂ OCH ₂ CH ₂ -		2.5	1 l	86	117-118 ^b (lit. ⁹ 118)
13	CH₃OCH₂CH₂	CH ₃	10	1 m	81	liquid
14	(CH₃) ₂ CH	CH ₃	10	1n	93	48-50 ^b
15	-CH ₂ (CH ₂) ₃ -CH(CH ₃)-		10	1 o	80	liquid

^a Isolated yield. ^b Recrystallized from CHCl₃ + n-hexane. ^c At reflux. ^d An excess of Me₂NH HCl (2.4 equiv) and pyridine (2.2 equiv) were employed. ^e Recrystallized from CH₂Cl₂ + n-hexane.

The structures of 1 were determined on the basis of the spectroscopic and mass spectral data, and elemental analyses, along with comparing mps with those in the literatures.⁸⁻¹⁰

It has been reported that ¹H NMR spectrum of 1e showed two singlets at 3.34 and 3.55 ppm assignable to two methyl groups, ⁹ which indicates that 1a exists as a polarized form with double bond character between nitrogen and thione carbon in chloroform. ¹⁵ Similarly two identical alkyl groups on nitrogen atom of other *N,N*-dialkylcyanothioformamides (1f-1i) exhibited different ¹H NMR chemical shifts. In order to assign the magnetically nonequivalent ¹H NMR signals of the identical alkyl groups of 1, compounds 1m, 1n, and 10 which possess two different alkyl groups of 1 were prepared.

¹H NMR (CDCl₃, 500 MHz) spectrum of 1m showed clearly an equilibrium mixture (3 : 2) of two geometrical isomers, *anti*-1m and *syn*-1m. Similarly, a clean spectrum (CDCl₃, 200 MHz) was shown in the case of 1n with a 2 : 1 equilibrium mixture of two isomers, *anti*-1n and *syn*-1n. In addition, 2 : 1 ratio of the intensities shown by a pair of the corresponding signals are in good agreement with the results obtained from ¹H NMR spectral data.

3.42 (s) 3.69 4.11 (t,
$$J = 7 \text{ Hz}$$
) (t, $J = 7 \text{ Hz}$) (t, J

¹³C NMR (CDCl₃, 125 MHz) spectrum of **1n** showing ten signals at 17.67, 19.68, 32.90, 36.59, 50.72, 58.93, 112.03, 112.32, 162.03, and 163.64 ppm supports that the compound **1n** exists an equilibrium mixture of *anti*- and *syn*-**1n**. ¹⁶ It is noteworthy that the chemical shifts, 162.03 and 163.64 ppm assignable to the polarized thione carbon rather than the thione carbon of nonpolar form **1n** are closer to 163.4 ppm assignable to the imino carbon of *N*-isopropyl-2-propanonimine ¹⁷ than 199.4 ppm of the thione carbon of *N*,*N*-dimethylthioacetamide. ¹⁷ ¹H NMR (CDCl₃, 80 MHz) spectrum of **1o** indicates that **1o** exists as a 1:1 mixture of two geometrical isomers. ¹⁸ We propose that *anti*-**1m** and *anti*-**1n** predominate in chloroform than the corresponding *syn* isomers which are likely to have more steric repulsion between bulkier 2-methoxyethyl and isopropyl groups than methyl group, and an electron-rich sulfur atom. Based on this assumption are assigned ¹H and ¹³C NMR signals of **1m**, **1n**, and **1o** as shown. By the same token, 3.34 and 3.55 ppm shown by **1a** are assigned to methyl proton signals of *anti*- and *syn*-**1a**, respectively.

The formation of 1 can be rationalized by a nucleophilic attack of alkylamine at C-5 to give an intermediate 4, which loses HCl and S_2 to yield 1. Alternatively, a nucleophilic attack of alkylamine at S-2 concomitant with the displacement of chlorine atom can lead to an intermediate 5, which is attacked by the second molecule of alkylamine to give 1 via an intermediate 6. Both mechanisms are proposed for the reactions of 2 with alkylamines.¹²

Acknowledgment Financial supports by the Basic Science Research Institute Program, Ministry of Education (BSRI - 95 - 3417) and the Center for Biofunctional Molecules (CBM) are gratefully acknowledged.

References and Notes

- (a) Friedrich, K.; Zamkanei, M. Tetrahedron Lett. 1977, 25, 2139-2140. (b) Friedrich, K.; Zamkanei, M. Chem. Ber. 1979, 112, 1867-1872. (c) Friedrich, J. D. J. Org. Chem. 1987, 52, 2442-2446.
- 2. Kumelj, B.; Tisler, M. Vestnik Solven. Kemi. drustva, 1958, 5, 69-73 (Chem. Abstr. 1960, 54, 22426f).
- 3. Friedrich, K.; Zamkanei, M. Chem. Ber. 1979, 112, 1873-1878.
- 4. Ketcham, R. Synthesis 1980, 869-870.
- 5. Khattak, I.; Ketcham, R.; Schaumann, E.; Adwidjaja, G. J. Org. Chem. 1985, 50, 3431-3434.
- (a) Grabenko, A. D.; Pel'kis, P. S. Zhur. Obshch. Khim. 1960, 30, 1222-1226 (Chem. Abstr. 1961, 55, 1484f). (b) Olin, J. F. U. S. Pat. 3287102 (1966) (Chem. Abstr. 1967, 66, 55252b).
- (a) Walter, W.; Bode, K.-D. Liebigs Ann. Chem. 1966, 698, 131-144. (b) Walter, W.; Bode, K.-D. Angew. Chem. 1966, 78, 517-532. (c) Cambie, R. C.; Chambers, D.; Rutledge, P. S.; Woodgate, P. D. J. Chem. Soc., Perkin Trans. 1. 1981, 40-51.
- 8. Nilsson, N. H.; Senning, H.; Karlson, S.; Sandstrom, J. Synthesis 1972, 314-316.
- 9. Hansen, P.; Kibbel, H. U. Z. Chem. 1976, 16, 182-183.
- 10. Harris, P. A.; Jackson, A.; Joule, J. A. Tetrahedron Lett. 1989, 30, 3189-3192.
- 11. Lee, H.; Kim, K. Bull. Korean Chem. Soc. 1992, 13, 107-108.
- 12. Lee, H.; Kim, K.; Whang, D.; Kim, K. J. Org. Chem. 1994, 59, 6179-6183.
- 13. Appel, R.; Janssen, H.; Siray, M.; Knoch, F. Chem. Ber. 1985, 118, 1632-1643.
- 14. Kibbel, H. U.; Kuecken, M.; Peters, E.; Weber, H. J. Prakt. Chem. 1981, 323, 41-48.
- (a) Lee, C. M.; Kumler, W. D. J. Org. Chem. 1962, 27, 2052-2054. (b) Hobson, R. F.; Reeves, L. W.; Shaw, K. N. J. Phys. Chem. 1973, 77, 1228-1232. (c) Sandstrom, J. J. Phys. Chem. 1967, 71, 2318-2325.
- 16. ¹³C NMR of anti-1n: 19.68 ((CH₃)₂C), 32. 90 (CH₃-N), 58.93 ((CH₃)₂CH), 112.03 ($\mathbb{C} = \mathbb{N}$), 162.65 ($\mathbb{C} = \mathbb{S}$). ¹³C NMR of syn-1n: 17.67 ((CH₃)₂C), 36.59 (CH₃-N), 50.72 ((CH₃)₂CH), 112.32 ($\mathbb{C} = \mathbb{N}$), 163.64 ($\mathbb{C} = \mathbb{S}$).
- Fresenius, W.; Huber, J. F. K.; Pungor, E.; Rechnitz, G. A.; Simon, W.; West, Th. S. in Tables of Spectral Data for Structure Determination of Organic Compounds; 2nd Ed.; Springer-Verlag, 1989; pp. C201 - C203.
- 18. ¹H NMR (CDCl₃, 80 MHz) of *anti-1o*: 1.28 (d, 3H, J = 8.0 Hz), 1.50-2.03 (m, 6H), 3.40-3.60 (m, 2H), 5.58 (m, 1H). *syn-1o*: 1.36 (d, 3H, J = 8.0 Hz), 1.50-2.03 (m, 6H), 3.40-3.60 (m, 2H), 5.10 (m, 1H).

(Received in Japan 6 February 1996; revised 25 March 1996; accepted 3 April 1996)